Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 537
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1144-1153, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621961

RESUMO

Agaricus blazei is a rare medicinal and edible fungus with a crispy taste and delicious flavor. Both fruiting body and mycelium are rich in polysaccharides, sterols, terpenoids, peptides, lipids, polyphenols, and other active ingredients, which have strong pharmacological activities such as anti-tumor, lipid-lowering, glucose-lowering, immunomodulation, optimization of intestinal flora, and anti-oxidation. Therefore, it is a kind of fungal resource with a great prospect of edible and medicinal development. Among the reported chemical components of A. blazei, blazeispirol is a series of sterol compounds unique to A. blazei, which has a spiral structure and is different from classical steroids. It is an important active ingredient found in the mycelium of A. blazei and has significant hepatoprotective activity. It can be used as a phylogenetic and chemotaxonomic marker of A. blazei strains and is considered an excellent lead compound for drug development. According to the skeleton structure characteristics, the 17 discovered blazeispirol compounds can be divided into two types: blazeispirane and problazeispirane. In order to further explore the resource of blazeispirol compounds of A. blazei, the discovery, isolation, structure, biological activity, and biosynthetic pathways of blazeispirol compounds of A. blazei were systematically reviewed. Besides, the metabolic regulation strategies related to the fermentation synthesis of blazeispirol A by A. blazei were discussed. This review could provide a reference for the efficient synthesis and development of blazeispirol compounds, the research and development of related drugs and functional foods, and the quality improvement of A. blazei and other medicinal and edible fungi resources and derivatives.


Assuntos
Agaricus , Neoplasias , Filogenia , Polissacarídeos , Esteroides , Agaricus/química , Agaricus/metabolismo
2.
Int J Biol Macromol ; 262(Pt 2): 130110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346624

RESUMO

In this study, chitin was isolated from a mushroom (Agaricus bisporus) using deep eutectic solvents, choline chloride: acetic acid (CCAA), choline chloride:lactic acid (CCLA) and choline chloride:glycerol (CCG). According to the results, three DES systems were also useful for the isolation of chitin from mushrooms. The deproteinization efficiency was 84.25 %. The degree of deacetylation of chitin isolated by microwave-assisted extraction using CCAA was 69 %. This result was promising to produce chitosan in a one-step, base-free process using deep eutectic solvents. FTIR, XRD, SEM and XPS were used to analyse the physicochemical properties of the chitin.


Assuntos
Agaricus , Quitosana , Quitina/química , Quitosana/química , Solventes Eutéticos Profundos , Solventes/química , Agaricus/química , Colina/química
3.
J Ethnopharmacol ; 322: 117676, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159823

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Agaricus blazei Murill (AbM) is one of the main mushrooms used for medicinal purposes. The use of AbM in the preparation of teas is widespread mainly in Asian countries, while in Brazil it is used as a functional food to combat inflammatory diseases and cancer. AIM OF THE STUDY: The main focus of this study was the characterization of the chemical profile of the hydroalcoholic extract of Agaricus blazei Murill (AbE), as well as the evaluation of its cytotoxic and anti-inflammatory potential using human neutrophils. MATERIALS AND METHODS: The extract was prepared by dynamic maceration using a mixture of ethanol and water (70/30, v v-1) as solvent. The chemical profile characterization was carried out by 2D NMR and GC-MS techniques. The cytotoxicity of AbE was evaluated through studies of hemolytic potential, cell viability and membrane integrity. The anti-inflammatory activity was analyzed by a PMA-induced neutrophil degranulation assay. RESULTS: Chemical analysis of AbE revealed the presence of 28 metabolites in its composition, with mannitol as the major compound. AbE at 1-200 µg mL-1 and mannitol at 4-160 µg mL-1, showed low hemolytic and cytotoxic potential against human red blood cells and neutrophils. Furthermore, both were able to significantly reduce the release of myeloperoxidase. CONCLUSIONS: These results indicate that AbE is a promising natural product to be incorporated into pharmaceutical dosage forms intended for the adjuvant treatment of inflammatory diseases.


Assuntos
Agaricus , Antineoplásicos , Humanos , Neutrófilos , Cromatografia Gasosa-Espectrometria de Massas , Agaricus/química , Manitol
4.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959740

RESUMO

This study explores the antifungal properties of Agaricus blazei Murrill, a valuable medicinal and edible fungus. Six compounds (1-6) were first isolated from A. blazei using various isolation techniques and identified using spectroscopic methods. These compounds include linoleic acid, 1,1'-oxybis(2,4-di-tert-butylbenzene), glycerol monolinoleate, volemolide (17R)-17-methylincisterol, (24s)-ergosta-7-en-3-ol, and dibutyl phthalate. This study also assesses the antifungal activities of these compounds against Trichophyton mentagrophology, Trichophyton rubrum, Candida albicans, and Cryptococcus neoformans. The results demonstrate varied sensitivities against these pathogenic fungi, with compound 2 showing significant inhibition against T. mentagrophology, compound 3 showing significant inhibition against T. rubrum, and compound 6 showing significant inhibition against C. albicans. This study underscores the medicinal potential of A. blazei as an antifungal agent and sheds light on its valuable research implications.


Assuntos
Agaricus , Antifúngicos , Antifúngicos/farmacologia , Agaricus/química , Candida albicans , Trichophyton
5.
Birth Defects Res ; 115(15): 1424-1437, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421350

RESUMO

INTRODUCTION: Lead (Pb) is a toxic pollutant, which can affect different tissues of the human body. The use of natural elements, as medicinal mushroom can reduce the toxic effects of Pb. OBJECTIVE: We evaluated, through preclinical tests, the oral co exposures to mushroom Agaricus bisporus (Ab) by gavage and Pb in drinking water, and the capability of Ab be a protective agent for both pregnant rats and their fetuses. METHODS: Female Wistar rats were divided into four groups (n = 5/group): Group I-Control; Group II-Ab 100 mg/kg; Group III-Pb 100 mg/L; Group IV-Ab +Pb -100 mg/kg +100 mg/L. Exposure was performed until the 19th day of gestation. On the 20th day, pregnant rats were euthanized, and the outcomes evaluated were weight gain; hematological profile; biochemical markers; oxidative stress markers; reproductive capacity; and embryo fetal development. RESULTS: The characterization of mushrooms reveals them to be a valuable source of nutrients. However, Pb ingestion resulted in reduced weight gain and negative impacts on hematological and biochemical parameters. Fortunately, co administration of mushrooms helped to mitigate these negative effects and promote recovery. The mushroom also showed antioxidant activity, improving parameters of oxidative stress. In addition, Ab partially recovered the damage in fetal morphology and bone parameters. CONCLUSION: Our findings indicated that the co administration of Ab improved the toxicity caused by Pb, and the mushroom could be used as a natural alternative as a protective/chelator agent.


Assuntos
Agaricus , Chumbo , Gravidez , Humanos , Ratos , Feminino , Animais , Chumbo/toxicidade , Ratos Wistar , Agaricus/química , Aumento de Peso
6.
ACS Appl Bio Mater ; 6(6): 2345-2357, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37285584

RESUMO

Mushroom chitin membranes with controllable pore structures were fabricated through a simple process with naturally abundant Agaricus bisporus mushrooms. A freeze-thaw method was applied to alter the pore structures of the membranes, which consist of chitin fibril clusters within the glucan matrix. With tunable pore size and distribution, mushroom chitin membranes could effectively separate stable oil/water emulsions (dodecane, toluene, isooctane, and chili oil) with various chemical properties and concentrations and particle contaminants (carbon black and microfibers) from water. Chitin fibrils tightly pack with each other to form a dense membrane, leading to no permeation of contaminants or water. An increasing number of applied freeze-thaw cycles confers more tortuous pore structures throughout the mushroom chitin membranes, leading to higher flux while maintaining rejection performance. The 3D simulation constructed by the X-ray computed tomography and GeoDict software also demonstrated capturing a considerable amount of contaminants within the membranes' pores, which can be easily removed by water rinsing for further successive filtration. Furthermore, mushroom chitin membranes were almost completely biodegraded after approximately a month of being buried in the soil or kept in a lysozyme solution while possessing mechanical durability demonstrated by consistent filtration performance for repeated usage up to 15 cycles under ambient and external pressure. This research is a proof of concept that mushroom-derived chitin develops functional and biodegradable materials for environmental applications with scalability.


Assuntos
Agaricus , Agaricus/química , Quitina/química , Filtração
7.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175649

RESUMO

Tyrosinase (EC 1.14.18.1) is implicated in melanin production in various organisms. There is a growing body of evidence suggesting that the overproduction of melanin might be related to several skin pigmentation disorders as well as neurodegenerative processes in Parkinson's disease. Based on this consideration, the development of tyrosinase inhibitors represents a new challenge to identify new agents in pharmaceutical and cosmetic applications. With the goal of identifying tyrosinase inhibitors from a synthetic source, we employed a cheap and facile preliminary assay using tyrosinase from Agaricus bisporus (AbTYR). We have previously demonstrated that the 4-fluorobenzyl moiety might be effective in interactions with the catalytic site of AbTYR; moreover, the additional chlorine atom exerted beneficial effects in enhancing inhibitory activity. Therefore, we planned the synthesis of new small compounds in which we incorporated the 3-chloro-4-fluorophenyl fragment into distinct chemotypes that revealed the ability to establish profitable contact with the AbTYR catalytic site. Our results confirmed that the presence of this fragment is an important structural feature to improve the AbTYR inhibition in these new chemotypes as well. Furthermore, docking analysis supported the best activity of the selected studied compounds, possessing higher potency when compared with reference compounds.


Assuntos
Agaricus , Monofenol Mono-Oxigenase , Monofenol Mono-Oxigenase/metabolismo , Melaninas/farmacologia , Agaricus/química , Domínio Catalítico , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular
8.
Int J Biol Macromol ; 234: 123731, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801286

RESUMO

In this study, pentacyclic triterpene-loaded emulsions were stabilized by polysaccharides from Agaricus blazei Murill mushroom (PAb). The drug-excipient compatibility results by Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) showed the absence of physicochemical incompatibilities. The use of these biopolymers at 0.75 % led to obtaining emulsions with droplets smaller than 300 nm, moderate polydispersity, and ζ-potential >30 mV in modulus. The emulsions presented high encapsulation efficiency, suitable pH for topical application, and absence of macroscopic signs of instability during 45 days. Morphological analysis suggested the deposition of thin layers of PAb around the droplets. The encapsulation of pentacyclic triterpene in emulsions, stabilized by PAb, improved the cytocompatibility of this drug against PC12 and murine astrocyte cells. There was a reduction in cytotoxicity, which resulted in a lower accumulation of intracellular reactive oxygen species and maintenance of the mitochondrial transmembrane potential. Based on these results, it is estimated that PAb are promising biopolymers for the emulsions' stabilization by improving their physicochemical and biological properties.


Assuntos
Agaricus , Citoproteção , Camundongos , Animais , Emulsões , Polissacarídeos/farmacologia , Polissacarídeos/química , Agaricus/química , Triterpenos Pentacíclicos
9.
Biosensors (Basel) ; 13(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36831990

RESUMO

Agaricus bisporus mushroom biomass contains a lectin, ABL, with remarkable specificity for lactose biorecognition; in this work, this feature was explored to develop a photoelectrochemical biosensor. The high lectin activity found in saline extracts of this macrofungus (640 HU mL-1), even at critical pH values (4-10) and temperatures (20-100 °C), allowed its direct use as an ABL source. Theoretical and experimental evidence revealed favorable electrostatic and biocompatible conditions to immobilize ABL on a poly(methylene blue)/fluorine-doped tin oxide-coated glass platform, giving rise to the ABL/PMB/FTO biosensor. The conducting polymer added further photoactivity to the device, allowing the identification of lectin-carbohydrate interactions with even greater sensitivity. The dose-response curves studied by electrochemical impedance spectroscopy showed a sigmoidal profile that was well-fitted by Hill's equation, expanding the working dynamic range (15-540 nmol L-1 lactose; 20.2 pmol L-1 detection limit) and avoiding undesirable sample dilution or preconcentration procedures. Under the optimized photoelectrochemical conditions, the ABL/PMB/FTO biosensor showed remarkable signal stability, accuracy, specificity, and selectivity to analyze lactose in commercial food products. This research raises interest in ABL-based biosensors and the added value of the crude Agaricus bisporus extract toward the development of greener and more sustainable biotechnological approaches.


Assuntos
Agaricus , Lectinas , Lactose , Agaricus/química
10.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36626759

RESUMO

The cultivated edible mushrooms Agaricus bisporus and Pleurotus ostreatus are valuable food crops and an important source of human nutrition. Agaricus bisporus is the dominant cultivated species in the western hemisphere and in Australia, while in Asian countries P. ostreatus is more prevalent. These two mushroom species are grown on fermented-pasteurized substrates, and bacteria and fungi play an important role in converting feedstocks into a selective medium for the mushroom mycelium. The mushrooms are usually introduced to the substrate as grain spawn, and the actively growing hyphae form a range of direct interactions with the diverse bacterial community in the substrate. Of these interactions, the most well studied is the removal of inhibitory volatile C8 compounds and ethylene by pseudomonads, which promotes mycelium growth and stimulates primordia formation of both A. bisporus and P. ostreatus. Bacterial biomass in the substrate is a significant nutrition source for the A. bisporus mycelium, both directly through bacteriolytic enzymes produced by A. bisporus, and indirectly through the action of extracellular bacterial enzymes, but this is less well studied for P. ostreatus. Apart from their role as a food source for the growing mycelium, bacteria also form extensive interactions with the mycelium of A. bisporus and P. ostreatus, by means other than those of the removal of inhibitory compounds. Although several of these interactions have been observed to promote mycelial growth, the proposed mechanisms of growth promotion by specific bacterial strains remain largely uncertain, and at times conflicting. Bacterial interactions also elicit varying growth-inhibitory responses from A. bisporus and P. ostreatus. This review explores characterized interactions involving bacteria and A. bisporus, and to a lesser degree P.ostreatus, and whilst doing so identifies existing research gaps and emphasizes directions for future work.


Assuntos
Agaricus , Pleurotus , Humanos , Pleurotus/química , Agaricus/química , Bactérias , Micélio
11.
Food Chem ; 401: 134114, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099820

RESUMO

This study reports first time investigation on efficacy of cajuput essential oil loaded chitosan nanoparticle (CjEO-CSNP) on shelf-life of white button mushroom (Agaricus bisporus) stored at 4±1 °C for 7-days. CjEO-CSNP was characterized through scanning electron microscopy, X-ray diffraction, and dynamic light scattering. The nanoparticles exhibited spherical shapes with average particle size 43.17-97.03 nm. The nanoencapsulation efficiency and loading capacity were ranged between 45.86 and 92.26% and 0.69-8.87%, respectively. The release study confirmed that CjEO-CSNP showed biphasic release patterns at different pH. Positive results were unveiled when the effect of CjEO-CSNP on shelf-life of mushroom was validated by analyzing the visual appearance and firmness. Further, CjEO-CSNP prevented weight loss and respiration rate, and improved the antioxidant activity of mushrooms. CjEO-CSNP also exhibited high safety profile (LD50= > 1200 mg/Kg body weight) without altering the sensory quality of coated mushrooms. Overall, CjEO-CSNP might be used as promising candidate to lengthen the shelf-life of button mushroom.


Assuntos
Agaricus , Quitosana , Melaleuca , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Quitosana/química , Conservação de Alimentos/métodos , Antioxidantes/farmacologia , Agaricus/química , Expectativa de Vida
12.
Food Chem ; 402: 134299, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152557

RESUMO

This study aimed to characterize mixtures of goat milk proteins and Agaricus blazei Murrill (ABM) extracts (aqueous, AE and polysaccharides, PE). The mixtures showed stable particles with ζ-potential more negative than -41.1 mV. The addition of AMB extracts to goat milk did not result in a significant particle size change, whereas their addition to heated goat milk significantly increased mean particle diameter (from 194 nm to 225 nm). Fourier Transform Infrared Spectroscopy (FTIR) showed that ABM extracts provoked changes in the secondary structure of goat milk proteins and interactions between polysaccharides and milk proteins predominantly via hydrogen and/or glycoside bonds and hydrophobic interactions. The milk protein profiles revealed proteolytic activity in mixtures with AE resulting in the formation of five new polypeptides. The different microstructures of mixtures with AE and PE were found by Scanning Electron Microscopy (SEM). A schematic representation of possible milk proteins-ABM extracts interactions has been given.


Assuntos
Agaricus , Proteínas do Leite , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Cabras , Agaricus/química , Polissacarídeos/química , Hidrogênio , Glicosídeos
13.
Prep Biochem Biotechnol ; 53(7): 786-796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36345997

RESUMO

Agaricus bisporus is one of the most widely cultivated edible mushrooms in the world. The chemical components of A. bisporus have a wide range of biological activities. In order to deeply understand the antioxidant properties of A. bisporus, this study conducted an investigation on the components of A. bisporus fermentation. Through the single factor experiment and response surface optimization, it was found that when the C/N ratio was 45:1, the inoculum concentration was 10%, and the fermentation time was 7 d, the n-butanol extract of the fermentation product had the strongest scavenging capacity for free radical generated through 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS·+). The concentration for 50% of the maximal effect (EC50) was 0.33 ± 0.01 mg/mL. Moreover, in order to identify the two main components, the elution-extrusion counter-current chromatography (EECCC) was employed for separation, where 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) and 5-(butoxymethyl) furfural were obtained. The antioxidant activity of 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) (EC50 = 0.26 ± 0.01 mg/mL) was superior to that of 5-butylmethyl furfural (EC50 = 1.52 ± 0.02 mg/mL), indicating that 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) was the main antioxidant in the fermentation products. The thermodynamic parameters and frontier molecular orbitals of 5,5'-oxy-dimethyl-bis (2-furanaldehyde) was evaluated by density functional theory (DFT). The result indicated 5,5'-oxy-dimethyl-bis(2-furanaldehyde) scavenged free radicals in polar media through single electron transfer followed by proton transfer (SET-PT).


Assuntos
Agaricus , Antioxidantes , Antioxidantes/farmacologia , Antioxidantes/química , Fermentação , Furaldeído , Agaricus/química
14.
Biosci Biotechnol Biochem ; 86(10): 1327-1332, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35983620

RESUMO

Five compounds including a new compound (1) were isolated from mycelia of a mushroom-forming fungus Agaricus blazei. Compound 2 was isolated from nature for the first time. Their structures were determined by the interpretation of spectroscopic data. In the bioassay examining growth inhibitory activity against phytopathogenic bacteria Clavibacter michiganensis, Burkholderia glumae, and Peptobacterium carotovorum, all the compounds showed inhibition effects on C. michiganensis. Compounds 3 and 4 also showed weak inhibitory activity against growth of B. glumae.


Assuntos
Agaricus , Ácidos Graxos , Agaricus/química , Bactérias , Ácidos Graxos/análise , Micélio/química
15.
Protein Pept Lett ; 29(5): 460-472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35382712

RESUMO

BACKGROUND: Protease inhibitors inhibit the activity of protease enzymes; hence, they are essentially involved in the regulation of the metabolic processes involving protease enzymes and the protection of the host organism against external damage due to proteases. These inhibitors are abundantly present in all living organisms but have not been much reported in mushrooms. Mushrooms are one of the major food components of humans, with delicious taste and high nutritional value. Mushrooms also have therapeutic and economic significance. The edible mushrooms with medicinal properties are much in commercial demand. To date, the presence of protease inhibitors has not been reported much in edible mushrooms. The present study reports the characterization of a protease inhibitor isolated from the common white button mushroom Agaricus bisporus. OBJECTIVE: The objective of the present study is to characterize the novel protease inhibitor from Agaricus bisporus in order to determine its nature and activity under varying environmental conditions. METHODS: The protease inhibitor was characterized through SDS PAGE, gel filtration chromatography, and de novo sequencing in order to determine its molecular mass and sequence, respectively. The optimum pH, temperature, and thermal stability were studied to determine the optimum working range of the protease inhibitor. The protease inhibitory activity (%) was determined in the presence of metal ions, surfactants, oxidizing agents, and reducing agents. The kinetic parameters and the type of inhibition exhibited by the protease inhibitor were determined using casein and trypsin protease enzyme. RESULTS: The protease inhibitor was found to be a low molecular mass compound of 25 kDa. The de novo sequencing matched the inhibitor against a 227 amino acid containing peptide molecular mass of 24.6 kDa molecular mass. The protease inhibitory activity (%) was found highest at pH 7.0 and temperature 50 °C, and the inhibitor was stable from pH 4.0-9.0 and temperature 30-80 °C. In the presence of metal ions, the residual protease inhibitory activity (%) enhanced in the presence of Na+, Mg2+, and Fe3+. The residual activity increased in the presence of the surfactant SDS slightly in comparison to control, while it decreased in the case of Triton-X and Tween 20. The presence of oxidizing agents, hydrogen peroxide and dimethyl sulfoxide decreased the residual inhibitory activity. The protease inhibitor's activity was unaffected by the reducing agents, dithiothreitol and ß-mercaptoethanol, at up to 2mM concentration, but it decreased at higher concentrations. The inhibitor exhibited uncompetitive inhibition against trypsin with an inhibitory constant of 166 nM, indicating a strong affinity towards the protease, with a half-life of 93.90 minutes at 37 °C. CONCLUSION: Protease inhibitors isolated from mushrooms are generally small in size, more stable, and tolerant towards varying external conditions. The protease inhibitor isolated from Agaricus bisporus also exhibited similar characteristics.


Assuntos
Agaricus , Inibidores de Proteases , Agaricus/química , Inibidores Enzimáticos/farmacologia , Humanos , Oxidantes , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , Substâncias Redutoras , Tripsina
16.
Food Chem ; 386: 132707, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35339091

RESUMO

Atmospheric cold plasma (ACP) is a novel nonthermal technology with potential applications in maintaining and improving food quality. The effect of ACP on the activity and structure of mushroom (Agaricus bisporus) polyphenol oxidase (PPO) was evaluated. Results demonstrated that the dielectric barrier discharge (DBD) based plasma technology could inactivate PPO (up to 69%) at 50 kV with the increased concentrations of H2O2 and NOx. An obvious enhancement of surface hydrophobicity was observed, whereas a gradual reduction of total sulfhydryl content was recorded with the increasing exposure time. Data from circular dichroism, atomic force microscopy, particle size distribution and fluorescence spectra displayed the rearrangement of secondary structure and disruption of the tertiary structure. Red shifts of fluorescence spectra showed positive correlations with the inactivation rate of PPO. Therefore, ACP treatment could be served as an alternative approach to inactivate undesirable enzymes to minimize the loss of food nutrition and quality.


Assuntos
Agaricus , Gases em Plasma , Agaricus/química , Catecol Oxidase/química , Peróxido de Hidrogênio
17.
PLoS One ; 17(3): e0255765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35294444

RESUMO

Agaricus bisporus is widely consumed on the world market. The easy browning of mushroom surface is one of the most intuitive factors affecting consumer purchase. A certain cognition on browning mechanism has been made after years of research. At present, people slow down the browning of mushrooms mainly by improving preservation methods. In addition, breeding is also a reliable way. In the production practice, we have identified some browning-resistant varieties, and we selected a browning-resistant variety to compare with an ordinary variety to reveal the resistance mechanism. Using transcriptomics and metabolomics, the differences in gene expression and metabolite levels were revealed, respectively. The results showed that differentially expressed genes (DEGs) like AbPPO4, AbPPO3 and AbPPO2 were differently expressed and these DEGs were involved in many pathways related to browning. The expression of AbPPO expression play an important role in the browning of A. bisporus and multiple PPO family members are involved in the regulation of browning. However, the resistance to browning cannot be judged only by the expression level of AbPPOs. For metabolomics, most of the different metabolites were organic acids. These organic acids had a higher level in anti-browning (BT) than easy-browning varieties (BS), although the profile was very heterogeneous. On the contrary, the content of trehalose in BS was significantly higher than that in BT. Higher organic acids decreased pH and further inhibited PPO activity. In addition, the BS had a higher content of trehalose, which might play roles in maintaining PPO activity. The difference of browning resistance between BS and BT is mainly due to the differential regulation mechanism of PPO.


Assuntos
Agaricus , Transcriptoma , Agaricus/química , Agaricus/genética , Humanos , Metabolômica , Melhoramento Vegetal , Trealose
18.
Int J Biol Macromol ; 205: 385-395, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35183600

RESUMO

The current study explores the effect of the extracted novel Mushroom polysaccharides and its formulation onto Alginate (Alg.)/kappa carrageenan microcapsules to exert immunotherapeutic effect upon activating gut resident natural killer cells (NK) against colon cancer. The extracted polysaccharides of Agaricus bisporus MH751906 was microcapsulated in Alg/κ-carrageenan microcapsules as an oral delivery system for colon cancer. The microcapsule is characterized by SEM, FTIR, Raman and TGA; and showed a superior acidic stability, controlled release, and thermal stability at high temperature with higher hydrogel swelling rate in colon-mimicking pH. Upon activation of human NK cells with microcapsules (ANK cells), a significant increase in CD16+CD56+ NK cell populations were recorded. These activated NK cells showed 74.09% cytotoxic effects against human colon cancer Caco-2 cells where majority of cancer cell populations arrested at G0/G1 phase leading to apoptosis. The apoptotic molecular mechanism induced by ANK cells on Caco-2 treated cells is through down regulations of both BCL2 and TGF surviving genes and up regulation in IkappaB-α gene expression. Therefore, this novel polysaccharides-alginate/κ-carrageenan microcapsules can be used as an oral targeted delivery system for colon cancer immunotherapy.


Assuntos
Agaricus , Neoplasias do Colo , Agaricus/química , Alginatos/química , Células CACO-2 , Cápsulas , Carragenina/química , Neoplasias do Colo/tratamento farmacológico , Humanos , Imunoterapia , Células Matadoras Naturais , Polissacarídeos/química
19.
Carbohydr Polym ; 278: 118917, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973736

RESUMO

Mushroom ß-d-glucans have demonstrated immunomodulatory activity, which is initiated by their recognition by specific receptors on immune system cells surfaces. Studies indicated that ß-d-glucans may present a synergistic effect with chemotherapy drugs. In this study, a linear ß-(1 â†’ 6)-d-glucan (B16), isolated from A. bisporus and previously characterized (Mw: 8.26 × 104 g/mol), was evaluated about its capacity to modulate THP-1 macrophages towards an M1 phenotype and induce an antitumoral activity. This was evidenced by the production of pro-inflammatory markers upon B16 treatment (30; 100 µg/mL). The breast tumor cells (MDA-MB-231) viability was not affected by treatment with B16, however, their viability markedly decreased upon treatment with the drug doxorubicin. The results showed a synergic effect of B16 and doxorubicin, which reduced the viability of MDA-MB-231 cells by 31%. Furthermore, B16 treatment provided a sustainable M1 state environment and contributed to increase the sensitivity of breast cancer cells to the doxorubicin treatment.


Assuntos
Agaricus/química , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Polissacarídeos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Fatores Imunológicos/química , Macrófagos/imunologia , Camundongos , Fenótipo , Polissacarídeos/química , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia
20.
J Sci Food Agric ; 102(7): 3029-3037, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34775597

RESUMO

BACKGROUND: Fresh mushrooms (Agaricus bisporus) are highly perishable and easily lose quality during storage. The packaging system can retard the deterioration of fresh mushrooms. However, water vapor transmission rates of commodity plastic films are lower than the transpiration rate of mushrooms, resulting in increased moisture condensation in the package and perishability of mushrooms due to microbial growth. A possible solution for controlling the humidity level in the package is to use a hygroscopic material. Acid leaching can improve the chemical and physical properties of expanded vermiculite (EV). The aim of this study was to develop a novel hygroscopic agent from acidified expanded vermiculite (AEV) and calcium chloride (CaCl2 ) that has a high moisture absorption capacity and maintains a powdered form in the packaging system for fresh mushrooms. RESULTS: Our findings revealed that leaching EV with hydrochloric acid increased porosity and hydrophilicity. The combination of AEV:CaCl2 at 6:4 (w/w, AEV/CS40) showed the highest moisture adsorption capacity at 1.724 ± 0.03 g water per gram of material. Then, 1.55 g of AEV/CS40 was applied to the mushroom packaging and stored at 4 °C. The results indicated that AEV/CS40 could delay mushroom deterioration in terms of color change, firmness, pH, total soluble solids, and microbial growth. CONCLUSION: The study findings indicate that the alternative solid hygroscopic material obtained by combining AEV with CaCl2 has potential for use as a hygroscopic material for preserving the quality of white button mushrooms. © 2021 Society of Chemical Industry.


Assuntos
Agaricus , Agaricus/química , Silicatos de Alumínio , Cloreto de Cálcio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...